Powder metal gears are found in aerospace, agricultural, automotive, building and construction, marine transportation, material handling, medical, military, petrochemical, pharmaceutical, power generation and robotics industries. The demand for application specific metal gears has led to the introduction of several types or styles such as anti-backlash, bevel, miter, chance, cluster, differential, helical, herringbone, hypoid, internal, planetary, spur and pinion gears. While these mechanisms can be produced in a number of machining processes, powder metal parts provide several advantages over traditional gear manufacturing methods. Read More…
Leading Manufacturers
Precision Sintered Parts
Tulsa, OK | 918-663-7511Since 1967, PSP has been a leader in small, intricate custom powdered metal parts for a wide range of industries, such as Sports & Recreation, Power Tools, Industrial Equipment, Oil & Gas.

GKN Sinter Metals
Auburn Hills, MI | 248-296-7800We have been doing sintered metal parts since our beginning. Our research and development team works hard to ensure that our products are on the leading edge of technological innovation at all times because we know how important state of the art products are to our customers. To learn more get in touch with our customer service department using telephone or email today!

Horizon Technology, Inc.
St. Marys, PA | 814-834-4004Horizon Technology has been providing cost-effective solutions for metal powder products since 2001. Since then, we've tapped into a wealth of powder metallurgy experience to form a Technology Network and create unique opportunities for you to convert components to powdered metal - components that were previously thought impossible to produce with powdered metal technology. Our company operates on values that directly benefit you, your product, and your supply chain. Contact us today for more information.

PSM BrownCo
Emporium, PA | 814-486-1768PSM BrownCo brings you the best in powdered metal processing. We are an ISO 9001:2008 certified company serving appliance, automotive, electrical, hardware and other industries. We use brass, bronze, nickel, iron, steel & aluminum materials. Since powder metallurgy is one of today's fastest-growing technologies, you should contact PSM BrownCo for your needs.

ASCO Sintering
Commerce, CA | 323-725-3550ASCO Sintering Co., based in Los Angeles, California, USA specializes in complex custom high quality powdered metal sintering solutions. ASCO uses advanced proprietary planetary gear technology that uses high strength material that results in final cost far below CNC machined or MIM solutions. The company is ISO 9001: 2008 certified; the parts conform to CE and ATEX standards. ASCO is privately owned by its employees many of whom are Six Sigma trained and have years of engineering experience.

Most of the benefits arise specifically from the versatility allowed in press-and-sinter processing. The ability to produce multilevel gears, internal configurations and very close tolerance components eliminate or reduce the need for secondary operations, thereby cutting costs and saving time.
The uniformity and reproducibility of these parts gives further economic value to powdered metal gears. Additionally, the porosity of sintered elements such as these allows for oil or resin impregnation which creates self-lubricating components, a feature that prolongs the working life of not only the gear, but the motor of which it is a part. The porosity, which can be closely controlled to suit specific requirements, also dampens sound and reduces the weight of a given part.
There are three basic steps to powder metallurgy, the process used to create powder metal gears. First, any of a number of techniques including atomization, flaking, pulverization, chemical reduction and electrolytic are used to reduce the initial raw metallic materials to a fine dust or powder. Specific amounts of this powder are then placed into the compaction die or mold where pressure is applied from both above and below in precise amounts relevant to the specific materials and intended use of the finished gear. This mold is pre-formed and results in the desired gear shape. After this form is ejected from the die, sintering is used to fuse the powder particles together.
The parts are placed on a moving belt which draws them through a controlled-atmosphere furnace, heating the compressed powder to just below the melting point of the raw materials. This temperature varies greatly, though a general rule is to use a temperature that is 2/3 that of the melting point for the primary metal. In this manner, the mechanical bonds of metal powders are converted into metallurgical bonds creating a solid mass from the powder. Gears can be composed of either a single metal or a composite material.
Common metals include aluminum, brass, bronze, cast iron, carbon or alloy steel, magnesium and titanium. Beyond materials, further considerations include, gear type, number of teeth, design units, tooth form, direction, gear center, pressure angle, gear features and mounting requirements.